Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113811, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393944

RESUMEN

Extracellular matrix (ECM) rigidity is a major effector of cell fate decisions. Whereas cell proliferation on stiff matrices, wherein Yes-associated protein (YAP) plays a pivotal role, is well documented, activation of apoptosis in response to soft matrices is poorly understood. Here, we show that YAP drives the apoptotic decision as well. We find that in cells on soft matrices, YAP is recruited to small adhesions, phosphorylated at the Y357 residue, and translocated into the nucleus, ultimately leading to apoptosis. In contrast, Y357 phosphorylation levels are dramatically low in large adhesions on stiff matrices. Furthermore, mild attenuation of actomyosin contractility allows adhesion growth on soft matrices, leading to reduced Y357 phosphorylation levels and resulting in cell growth. These findings indicate that failed adhesion reinforcement drives rigidity-dependent apoptosis through YAP and that this decision is not determined solely by ECM rigidity but rather by the balance between cellular forces and ECM rigidity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Integrinas , Integrinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Fosforilación , Matriz Extracelular/metabolismo , Apoptosis
2.
Cell Rep ; 42(5): 112473, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37148241

RESUMEN

Fibronectin fibrillogenesis and mechanosensing both depend on integrin-mediated force transmission to the extracellular matrix. However, force transmission is in itself dependent on fibrillogenesis, and fibronectin fibrils are found in soft embryos where high forces cannot be applied, suggesting that force cannot be the sole initiator of fibrillogenesis. Here, we identify a nucleation step prior to force transmission, driven by fibronectin oxidation mediated by lysyl oxidase enzyme family members. This oxidation induces fibronectin clustering, which promotes early adhesion, alters cellular response to soft matrices, and enhances force transmission to the matrix. In contrast, absence of fibronectin oxidation abrogates fibrillogenesis, perturbs cell-matrix adhesion, and compromises mechanosensation. Moreover, fibronectin oxidation promotes cancer cell colony formation in soft agar as well as collective and single-cell migration. These results reveal a force-independent enzyme-dependent mechanism that initiates fibronectin fibrillogenesis, establishing a critical step in cell adhesion and mechanosensing.


Asunto(s)
Matriz Extracelular , Fibronectinas , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Adhesión Celular , Integrinas/metabolismo , Movimiento Celular
3.
J Cell Biol ; 221(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35652786

RESUMEN

Both cell-cell and cell-matrix adhesions are regulated by mechanical signals, but the mechanobiological processes that mediate the cross talk between these structures are poorly understood. Here we show that α-catenin, a mechanosensitive protein that is classically linked with cadherin-based adhesions, associates with and regulates integrin adhesions. α-Catenin is recruited to the edges of mesenchymal cells, where it interacts with F-actin. This is followed by mutual retrograde flow of α-catenin and F-actin from the cell edge, during which α-catenin interacts with vinculin within integrin adhesions. This interaction affects adhesion maturation, stress-fiber assembly, and force transmission to the matrix. In epithelial cells, α-catenin is present in cell-cell adhesions and absent from cell-matrix adhesions. However, when these cells undergo epithelial-to-mesenchymal transition, α-catenin transitions to the cell edge, where it facilitates proper mechanosensing. This is highlighted by the ability of α-catenin-depleted cells to grow on soft matrices. These results suggest a dual role of α-catenin in mechanosensing, through both cell-cell and cell-matrix adhesions.


Asunto(s)
Actinas , Matriz Extracelular , Integrinas , Mecanotransducción Celular , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Células Cultivadas , Humanos , alfa Catenina/genética , alfa Catenina/metabolismo
4.
Biol Bull ; 230(1): 56-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26896178

RESUMEN

Myostatin (MSTN) and activin are members of the transforming growth factor-ß superfamily. Both signal through the activin type II receptors (ActRII and ActRIIB). In a previous report, we demonstrated that fish possess at least 2 genes for ActRIIB: ActRIIB-1 and ActRIIB-2, which differ in their amino acid sequence. We also showed that affinity-purified, fish-soluble ActRIIB-1 (extracellular domain; ECD), produced in the yeast Pichia pastoris, inhibited recombinant mouse/rat/human mature MSTN activity in vitro using a reporter gene assay in the mammalian A204 cell line. In the present study, we produced soluble ActRIIB-2a in P. pastoris, and showed that it is N-glycosylated, similar to soluble ActRIIB-1. Inhibition of MSTN and activin A activities by affinity-purified ActRIIB-2a was compared with that of soluble ActRIIB-1 using the CAGA-luciferase assay in A204 cells. The findings of this study provide evidence that both paralogs, which probably resulted from gene duplication, did not diversify in their functionality (neofunctionalization), but rather retained a similar function. Both ActRIIB isoforms are equally potent in the mammalian system, and both exhibited an inhibitory effect on mammalian MSTN and activin A. Moreover--in spite of the amino acid differences in ECD between the two paralogs--it appears that the residues important for ligand binding are conserved, and that they recognize the mammalian ligands activin A and MSTN to the same extent.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Dorada/fisiología , Receptores de Activinas Tipo II/genética , Animales , Glicosilación , Pichia/genética , Pichia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Comp Biochem Physiol B Biochem Mol Biol ; 164(2): 99-110, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23178682

RESUMEN

Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily, known as a negative regulator of skeletal muscle development and growth in mammals. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. Here we describe the cloning and sequence analysis of spliced and precursor (unspliced) transcripts as well as the 5' flanking region of MSTN-2 from the marine fish Umbrina cirrosa (ucMSTN-2). In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed high transcriptional activity in muscle cells and in differentiated neural cells, in accordance with our previous findings in MSTN-2 promoter from Sparus aurata. Comparative informatics analysis of MSTN-2 from several fish species revealed high conservation of the predicted amino acid sequence as well as the gene structure (exon length) although intron length varied between species. The proximal promoter of MSTN-2 gene was found to be conserved among Perciforms. In conclusion, this study reinforces our conclusion that MSTN-2 promoter is a very strong promoter, especially in muscle cells. In addition, we show that the MSTN-2 gene structure is highly conserved among fishes as is the predicted amino acid sequence of the peptide.


Asunto(s)
Proteínas de Peces/genética , Miostatina/genética , Perciformes/genética , Regiones Promotoras Genéticas/genética , Región de Flanqueo 5'/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Células CHO , Clonación Molecular , Secuencia Conservada/genética , Cricetinae , Cricetulus , Proteínas de Peces/clasificación , Expresión Génica , Datos de Secuencia Molecular , Músculos/citología , Músculos/metabolismo , Miostatina/clasificación , Filogenia , Isoformas de Proteínas/genética , Precursores de Proteínas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
6.
Mol Cell Endocrinol ; 361(1-2): 51-68, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22483947

RESUMEN

Myostatin (MSTN) is a negative regulator of skeletal muscle growth. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. In this study, we analyzed the structural-functional features of the four variants of Sparus aurata MSTN-2 5'-flanking region: saMSTN-2a, saMSTN-2as, saMSTN-2b and saMSTN-2c. In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed surprisingly high transcriptional activity in muscle cells, suggesting the presence of regulatory elements unique to differentiated myotubes. These observations were confirmed by in situ intramuscular injections of promoter DNA followed by reporter gene assays. Moreover, high promoter activity was found in differentiated neural cell, in agreement with MSTN-2 expression in brain. Progressive 5'-deletion analysis, using reporter gene assays, showed that the core promoter is located within the first -127 bp upstream of the ATG, and suggested the presence of regulatory elements that either repress or induce transcriptional activity. Transient transgenic zebrafish provided evidence for saMSTN-2 promoter ability to direct GFP expression to myofibers. Finally, our data shows that although no mature saMSTN-2 mRNA is observed in muscle; unspliced forms accumulate, confirming high level of transcription. In conclusion, our study shows for the first time that MSTN-2 promoter is a very robust promoter, especially in muscle cells.


Asunto(s)
Alelos , Regulación de la Expresión Génica , Músculos/metabolismo , Miostatina/genética , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Dorada/genética , Empalme Alternativo/genética , Animales , Animales Modificados Genéticamente , Organismos Acuáticos/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Secuencia Conservada/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Datos de Secuencia Molecular , Filogenia , Ratas , Elementos de Respuesta/genética , Eliminación de Secuencia/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transgenes/genética , Pez Cebra
7.
BMC Genet ; 12: 22, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21284852

RESUMEN

BACKGROUND: Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. Fish express at least two genes for MSTN: MSTN-1 and MSTN-2. To date, MSTN-2 promoters have been cloned only from salmonids and zebrafish. RESULTS: Here we described the cloning and sequence analysis of MSTN-2 gene and its 5' flanking region in the marine fish Sparus aurata (saMSTN-2). We demonstrate the existence of three alleles of the promoter and three alleles of the first intron. Sequence comparison of the promoter region in the three alleles revealed that although the sequences of the first 1050 bp upstream of the translation start site are almost identical in the three alleles, a substantial sequence divergence is seen further upstream. Careful sequence analysis of the region upstream of the first 1050 bp in the three alleles identified several elements that appear to be repeated in some or all sequences, at different positions. This suggests that the promoter region of saMSTN-2 has been subjected to various chromosomal rearrangements during the course of evolution, reflecting either insertion or deletion events. Screening of several genomic DNA collections indicated differences in allele frequency, with allele 'b' being the most abundant, followed by allele 'c', whereas allele 'a' is relatively rare. Sequence analysis of saMSTN-2 gene also revealed polymorphism in the first intron, identifying three alleles. The length difference in alleles '1R' and '2R' of the first intron is due to the presence of one or two copies of a repeated block of approximately 150 bp, located at the 5' end of the first intron. The third allele, '4R', has an additional insertion of 323 bp located 116 bp upstream of the 3' end of the first intron. Analysis of several DNA collections showed that the '2R' allele is the most common, followed by the '4R' allele, whereas the '1R' allele is relatively rare. Progeny analysis of a full-sib family showed a Mendelian mode of inheritance of the two genetic loci. No clear association was found between the two genetic markers and growth rate. CONCLUSION: These results show for the first time a substantial degree of polymorphism in both the promoter and first intron of MSTN-2 gene in a perciform fish species which points to chromosomal rearrangements that took place during evolution.


Asunto(s)
Duplicación de Gen , Intrones , Miostatina/genética , Polimorfismo Genético , Regiones Promotoras Genéticas , Dorada/genética , Translocación Genética , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...